Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Infect Dis Model ; 7(4): 778-794, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2069075

ABSTRACT

In stochastic modeling of infectious diseases, it has been established that variations in infectivity affect the probability of a major outbreak, but not the shape of the curves during a major outbreak, which is predicted by deterministic models (Diekmann et al., 2012). However, such conclusions are derived under idealized assumptions such as the population size tending to infinity, and the individual degree of infectivity only depending on variations in the infectiousness period. In this paper we show that the same conclusions hold true in a finite population representing a medium size city, where the degree of infectivity is determined by the offspring distribution, which we try to make as realistic as possible for SARS-CoV-2. In particular, we consider distributions with fat tails, to incorporate the existence of super-spreaders. We also provide new theoretical results on convergence of stochastic models which allows to incorporate any offspring distribution with a finite variance.

2.
Math Biosci Eng ; 19(12): 13137-13151, 2022 09 08.
Article in English | MEDLINE | ID: covidwho-2055536

ABSTRACT

The basic reproduction number, $ R_0 $, plays a central role in measuring the transmissibility of an infectious disease, and it thus acts as the fundamental index for planning control strategies. In the present study, we apply a branching process model to meticulously observed contact tracing data from Wakayama Prefecture, Japan, obtained in early 2020 and mid-2021. This allows us to efficiently estimate $ R_0 $ and the dispersion parameter $ k $ of the wild-type COVID-19, as well as the relative transmissibility of the Delta variant and relative transmissibility among fully vaccinated individuals, from a very limited data. $ R_0 $ for the wild type of COVID-19 is estimated to be 3.78 (95% confidence interval [CI]: 3.72-3.83), with $ k = 0.236 $ (95% CI: 0.233-0.240). For the Delta variant, the relative transmissibility to the wild type is estimated to be 1.42 (95% CI: 0.94-1.90), which gives $ R_0 = 5.37 $ (95% CI: 3.55-7.21). Vaccine effectiveness, determined by the reduction in the number of secondary transmissions among fully vaccinated individuals, is estimated to be 91% (95% CI: 85%-97%). The present study highlights that basic reproduction numbers can be accurately estimated from the distribution of minor outbreak data, and these data can provide further insightful epidemiological estimates including the dispersion parameter and vaccine effectiveness regarding the prevention of transmission.


Subject(s)
COVID-19 , Humans , Basic Reproduction Number , COVID-19/epidemiology , SARS-CoV-2/genetics , Disease Outbreaks
SELECTION OF CITATIONS
SEARCH DETAIL